Two sample t test  equal variances not assumed  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Two sample $t$ test  equal variances not assumed  $z$ test for the difference between two proportions  MannWhitneyWilcoxon test  KruskalWallis test 


Independent/grouping variable  Independent/grouping variable  Independent/grouping variable  Independent/grouping variable  
One categorical with 2 independent groups  One categorical with 2 independent groups  One categorical with 2 independent groups  One categorical with $I$ independent groups ($I \geqslant 2$)  
Dependent variable  Dependent variable  Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One categorical with 2 independent groups  One of ordinal level  One of ordinal level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  H_{0}: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
Formulation 1:
 If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:
 
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  H_{1} two sided: $\pi_1 \neq \pi_2$ H_{1} right sided: $\pi_1 > \pi_2$ H_{1} left sided: $\pi_1 < \pi_2$  If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
Formulation 1:
 If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in all $I$ populations:
Formulation 1:
 
Assumptions  Assumptions  Assumptions  Assumptions  



 
Test statistic  Test statistic  Test statistic  Test statistic  
$t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  $z = \dfrac{p_1  p_2}{\sqrt{p(1  p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2  p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$  Two different types of test statistics can be used; both will result in the same test outcome. The first is the Wilcoxon rank sum statistic $W$:
Note: we could just as well base W and U on group 2. This would only 'flip' the right and left sided alternative hypotheses. Also, tables with critical values for $U$ are often based on the smaller of $U$ for group 1 and for group 2.  $H = \dfrac{12}{N (N + 1)} \sum \dfrac{R^2_i}{n_i}  3(N + 1)$  
Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $W$ and of $U$ if H_{0} were true  Sampling distribution of $H$ if H_{0} were true  
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1  1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2  1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$  1 and $n_2$  1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations.  Approximately the standard normal distribution  Sampling distribution of $W$:
Sampling distribution of $U$: For small samples, the exact distribution of $W$ or $U$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_W$ and $\sigma_U$ is more complicated.  For large samples, approximately the chisquared distribution with $I  1$ degrees of freedom. For small samples, the exact distribution of $H$ should be used.  
Significant?  Significant?  Significant?  Significant?  
Two sided:
 Two sided:
 For large samples, the table for standard normal probabilities can be used: Two sided:
 For large samples, the table with critical $X^2$ values can be used. If we denote $X^2 = H$:
 
Approximate $C\%$ confidence interval for $\mu_1  \mu_2$  Approximate $C\%$ confidence interval for $\pi_1  \pi_2$  n.a.  n.a.  
$(\bar{y}_1  \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.  Regular (large sample):
     
Visual representation  n.a.  n.a.  n.a.  
      
n.a.  Equivalent to  Equivalent to  n.a.  
  When testing two sided: chisquared test for the relationship between two categorical variables, where both categorical variables have 2 levels.  If there are no ties in the data, the two sided MannWhitneyWilcoxon test is equivalent to the KruskalWallis test with an independent variable with 2 levels ($I$ = 2).    
Example context  Example context  Example context  Example context  
Is the average mental health score different between men and women?  Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.  Do men tend to score higher on social economic status than women?  Do people from different religions tend to score differently on social economic status?  
SPSS  SPSS  SPSS  SPSS  
Analyze > Compare Means > IndependentSamples T Test...
 SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Independent Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples...
 
Jamovi  Jamovi  Jamovi  Jamovi  
TTests > Independent Samples TTest
 Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples  $\chi^2$ test of association
 TTests > Independent Samples TTest
 ANOVA > One Way ANOVA  KruskalWallis
 
Practice questions  Practice questions  Practice questions  Practice questions  