Two sample t test - equal variances not assumed - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Two sample $t$ test - equal variances not assumed
$z$ test for the difference between two proportions
Mann-Whitney-Wilcoxon test
Marginal Homogeneity test / Stuart-Maxwell test
Two sample $t$ test - equal variances assumed
Independent/grouping variableIndependent/grouping variableIndependent/grouping variableIndependent variableIndependent/grouping variable
One categorical with 2 independent groupsOne categorical with 2 independent groupsOne categorical with 2 independent groups2 paired groupsOne categorical with 2 independent groups
Dependent variableDependent variableDependent variableDependent variableDependent variable
One quantitative of interval or ratio levelOne categorical with 2 independent groupsOne of ordinal levelOne categorical with $J$ independent groups ($J \geqslant 2$)One quantitative of interval or ratio level
Null hypothesisNull hypothesisNull hypothesisNull hypothesisNull hypothesis
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
H0: $\pi_1 = \pi_2$

Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
  • H0: the population median for group 1 is equal to the population median for group 2
Else:
Formulation 1:
  • H0: the population scores in group 1 are not systematically higher or lower than the population scores in group 2
Formulation 2:
  • H0: P(an observation from population 1 exceeds an observation from population 2) = P(an observation from population 2 exceeds observation from population 1)
Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.
H0: for each category $j$ of the dependent variable, $\pi_j$ for the first paired group = $\pi_j$ for the second paired group.

Here $\pi_j$ is the population proportion in category $j.$
H0: $\mu_1 = \mu_2$

Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.
Alternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesisAlternative hypothesis
H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
H1 two sided: $\pi_1 \neq \pi_2$
H1 right sided: $\pi_1 > \pi_2$
H1 left sided: $\pi_1 < \pi_2$
If the dependent variable is measured on a continuous scale and the shape of the distribution of the dependent variable is the same in both populations:
  • H1 two sided: the population median for group 1 is not equal to the population median for group 2
  • H1 right sided: the population median for group 1 is larger than the population median for group 2
  • H1 left sided: the population median for group 1 is smaller than the population median for group 2
Else:
Formulation 1:
  • H1 two sided: the population scores in group 1 are systematically higher or lower than the population scores in group 2
  • H1 right sided: the population scores in group 1 are systematically higher than the population scores in group 2
  • H1 left sided: the population scores in group 1 are systematically lower than the population scores in group 2
Formulation 2:
  • H1 two sided: P(an observation from population 1 exceeds an observation from population 2) $\neq$ P(an observation from population 2 exceeds an observation from population 1)
  • H1 right sided: P(an observation from population 1 exceeds an observation from population 2) > P(an observation from population 2 exceeds an observation from population 1)
  • H1 left sided: P(an observation from population 1 exceeds an observation from population 2) < P(an observation from population 2 exceeds an observation from population 1)
H1: for some categories of the dependent variable, $\pi_j$ for the first paired group $\neq$ $\pi_j$ for the second paired group.H1 two sided: $\mu_1 \neq \mu_2$
H1 right sided: $\mu_1 > \mu_2$
H1 left sided: $\mu_1 < \mu_2$
AssumptionsAssumptionsAssumptionsAssumptionsAssumptions
  • Within each population, the scores on the dependent variable are normally distributed
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Sample size is large enough for $z$ to be approximately normally distributed. Rule of thumb:
    • Significance test: number of successes and number of failures are each 5 or more in both sample groups
    • Regular (large sample) 90%, 95%, or 99% confidence interval: number of successes and number of failures are each 10 or more in both sample groups
    • Plus four 90%, 95%, or 99% confidence interval: sample sizes of both groups are 5 or more
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
  • Sample of pairs is a simple random sample from the population of pairs. That is, pairs are independent of one another
  • Within each population, the scores on the dependent variable are normally distributed
  • The standard deviation of the scores on the dependent variable is the same in both populations: $\sigma_1 = \sigma_2$
  • Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
Test statisticTest statisticTest statisticTest statisticTest statistic
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
$z = \dfrac{p_1 - p_2}{\sqrt{p(1 - p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2.
Note: we could just as well compute $p_2 - p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$
Two different types of test statistics can be used; both will result in the same test outcome. The first is the Wilcoxon rank sum statistic $W$: The second type of test statistic is the Mann-Whitney $U$ statistic:
  • $U = W - \dfrac{n_1(n_1 + 1)}{2}$
where $n_1$ is the sample size of group 1.

Note: we could just as well base W and U on group 2. This would only 'flip' the right and left sided alternative hypotheses. Also, tables with critical values for $U$ are often based on the smaller of $U$ for group 1 and for group 2.
Computing the test statistic is a bit complicated and involves matrix algebra. Unless you are following a technical course, you probably won't need to calculate it by hand.$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s_p$ is the pooled standard deviation, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis.

The denominator $s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0.

Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.
n.a.n.a.n.a.n.a.Pooled standard deviation
----$s_p = \sqrt{\dfrac{(n_1 - 1) \times s^2_1 + (n_2 - 1) \times s^2_2}{n_1 + n_2 - 2}}$
Sampling distribution of $t$ if H0 were trueSampling distribution of $z$ if H0 were trueSampling distribution of $W$ and of $U$ if H0 were trueSampling distribution of the test statistic if H0 were trueSampling distribution of $t$ if H0 were true
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to
$k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$
or
$k$ = the smaller of $n_1$ - 1 and $n_2$ - 1

First definition of $k$ is used by computer programs, second definition is often used for hand calculations.
Approximately the standard normal distribution

Sampling distribution of $W$:
For large samples, $W$ is approximately normally distributed with mean $\mu_W$ and standard deviation $\sigma_W$ if the null hypothesis were true. Here $$ \begin{aligned} \mu_W &= \dfrac{n_1(n_1 + n_2 + 1)}{2}\\ \sigma_W &= \sqrt{\dfrac{n_1 n_2(n_1 + n_2 + 1)}{12}} \end{aligned} $$ Hence, for large samples, the standardized test statistic $$ z_W = \dfrac{W - \mu_W}{\sigma_W}\\ $$ follows approximately the standard normal distribution if the null hypothesis were true. Note that if your $W$ value is based on group 2, $\mu_W$ becomes $\frac{n_2(n_1 + n_2 + 1)}{2}$.

Sampling distribution of $U$:
For large samples, $U$ is approximately normally distributed with mean $\mu_U$ and standard deviation $\sigma_U$ if the null hypothesis were true. Here $$ \begin{aligned} \mu_U &= \dfrac{n_1 n_2}{2}\\ \sigma_U &= \sqrt{\dfrac{n_1 n_2(n_1 + n_2 + 1)}{12}} \end{aligned} $$ Hence, for large samples, the standardized test statistic $$ z_U = \dfrac{U - \mu_U}{\sigma_U}\\ $$ follows approximately the standard normal distribution if the null hypothesis were true.

For small samples, the exact distribution of $W$ or $U$ should be used.

Note: if ties are present in the data, the formula for the standard deviations $\sigma_W$ and $\sigma_U$ is more complicated.
Approximately the chi-squared distribution with $J - 1$ degrees of freedom$t$ distribution with $n_1 + n_2 - 2$ degrees of freedom
Significant?Significant?Significant?Significant?Significant?
Two sided: Right sided: Left sided: Two sided: Right sided: Left sided: For large samples, the table for standard normal probabilities can be used:
Two sided: Right sided: Left sided:
If we denote the test statistic as $X^2$:
  • Check if $X^2$ observed in sample is equal to or larger than critical value $X^{2*}$ or
  • Find $p$ value corresponding to observed $X^2$ and check if it is equal to or smaller than $\alpha$
Two sided: Right sided: Left sided:
Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$Approximate $C\%$ confidence interval for $\pi_1 - \pi_2$n.a.n.a.$C\%$ confidence interval for $\mu_1 - \mu_2$
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
Regular (large sample):
  • $(p_1 - p_2) \pm z^* \times \sqrt{\dfrac{p_1(1 - p_1)}{n_1} + \dfrac{p_2(1 - p_2)}{n_2}}$
    where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
With plus four method:
  • $(p_{1.plus} - p_{2.plus}) \pm z^* \times \sqrt{\dfrac{p_{1.plus}(1 - p_{1.plus})}{n_1 + 2} + \dfrac{p_{2.plus}(1 - p_{2.plus})}{n_2 + 2}}$
    where $p_{1.plus} = \dfrac{X_1 + 1}{n_1 + 2}$, $p_{2.plus} = \dfrac{X_2 + 1}{n_2 + 2}$, and the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval)
--$(\bar{y}_1 - \bar{y}_2) \pm t^* \times s_p\sqrt{\dfrac{1}{n_1} + \dfrac{1}{n_2}}$
where the critical value $t^*$ is the value under the $t_{n_1 + n_2 - 2}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20).

The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test.
n.a.n.a.n.a.n.a.Effect size
----Cohen's $d$:
Standardized difference between the mean in group $1$ and in group $2$: $$d = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$ Cohen's $d$ indicates how many standard deviations $s_p$ the two sample means are removed from each other.
Visual representationn.a.n.a.n.a.Visual representation
Two sample t test - equal variances not assumed
---
Two sample t test - equal variances assumed
n.a.Equivalent toEquivalent ton.a.Equivalent to
-When testing two sided: chi-squared test for the relationship between two categorical variables, where both categorical variables have 2 levels.If there are no ties in the data, the two sided Mann-Whitney-Wilcoxon test is equivalent to the Kruskal-Wallis test with an independent variable with 2 levels ($I$ = 2).-One way ANOVA with an independent variable with 2 levels ($I$ = 2):
  • two sided two sample $t$ test is equivalent to ANOVA $F$ test when $I$ = 2
  • two sample $t$ test is equivalent to $t$ test for contrast when $I$ = 2
  • two sample $t$ test is equivalent to $t$ test multiple comparisons when $I$ = 2
OLS regression with one categorical independent variable with 2 levels:
  • two sided two sample $t$ test is equivalent to $F$ test regression model
  • two sample $t$ test is equivalent to $t$ test for regression coefficient $\beta_1$
Example contextExample contextExample contextExample contextExample context
Is the average mental health score different between men and women?Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.Do men tend to score higher on social economic status than women? Subjects are asked to taste three different types of mayonnaise, and to indicate which of the three types of mayonnaise they like best. They then have to drink a glass of beer, and taste and rate the three types of mayonnaise again. Does drinking a beer change which type of mayonnaise people like best?Is the average mental health score different between men and women? Assume that in the population, the standard deviation of mental health scores is equal amongst men and women.
SPSSSPSSSPSSSPSSSPSS
Analyze > Compare Means > Independent-Samples T Test...
  • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Analyze > Descriptive Statistics > Crosstabs...
  • Put your independent (grouping) variable in the box below Row(s), and your dependent variable in the box below Column(s)
  • Click the Statistics... button, and click on the square in front of Chi-square
  • Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Independent Samples...
  • Put your dependent variable in the box below Test Variable List and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
  • Put the two paired variables in the boxes below Variable 1 and Variable 2
  • Under Test Type, select the Marginal Homogeneity test
Analyze > Compare Means > Independent-Samples T Test...
  • Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
  • Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
  • Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
  • Continue and click OK
JamoviJamoviJamovin.a.Jamovi
T-Tests > Independent Samples T-Test
  • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Welch's
  • Under Hypothesis, select your alternative hypothesis
Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chi-squared test instead. The $p$ value resulting from this chi-squared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:

Frequencies > Independent Samples - $\chi^2$ test of association
  • Put your independent (grouping) variable in the box below Rows, and your dependent variable in the box below Columns
T-Tests > Independent Samples T-Test
  • Put your dependent variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Mann-Whitney U
  • Under Hypothesis, select your alternative hypothesis
-T-Tests > Independent Samples T-Test
  • Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
  • Under Tests, select Student's (selected by default)
  • Under Hypothesis, select your alternative hypothesis
Practice questionsPractice questionsPractice questionsPractice questionsPractice questions