Two sample t test  equal variances not assumed  overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the righthand column. To practice with a specific method click the button at the bottom row of the table
Two sample $t$ test  equal variances not assumed  $z$ test for the difference between two proportions  Friedman test  Wilcoxon signedrank test 


Independent/grouping variable  Independent/grouping variable  Independent/grouping variable  Independent variable  
One categorical with 2 independent groups  One categorical with 2 independent groups  One within subject factor ($\geq 2$ related groups)  2 paired groups  
Dependent variable  Dependent variable  Dependent variable  Dependent variable  
One quantitative of interval or ratio level  One categorical with 2 independent groups  One of ordinal level  One quantitative of interval or ratio level  
Null hypothesis  Null hypothesis  Null hypothesis  Null hypothesis  
H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2.  H_{0}: $\pi_1 = \pi_2$
Here $\pi_1$ is the population proportion of 'successes' for group 1, and $\pi_2$ is the population proportion of 'successes' for group 2.  H_{0}: the population scores in any of the related groups are not systematically higher or lower than the population scores in any of the other related groups
Usually the related groups are the different measurement points. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  H_{0}: $m = 0$
Here $m$ is the population median of the difference scores. A difference score is the difference between the first score of a pair and the second score of a pair. Several different formulations of the null hypothesis can be found in the literature, and we do not agree with all of them. Make sure you (also) learn the one that is given in your text book or by your teacher.  
Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  Alternative hypothesis  
H_{1} two sided: $\mu_1 \neq \mu_2$ H_{1} right sided: $\mu_1 > \mu_2$ H_{1} left sided: $\mu_1 < \mu_2$  H_{1} two sided: $\pi_1 \neq \pi_2$ H_{1} right sided: $\pi_1 > \pi_2$ H_{1} left sided: $\pi_1 < \pi_2$  H_{1}: the population scores in some of the related groups are systematically higher or lower than the population scores in other related groups  H_{1} two sided: $m \neq 0$ H_{1} right sided: $m > 0$ H_{1} left sided: $m < 0$  
Assumptions  Assumptions  Assumptions  Assumptions  



 
Test statistic  Test statistic  Test statistic  Test statistic  
$t = \dfrac{(\bar{y}_1  \bar{y}_2)  0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1  \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1  \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1  \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2  \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$.  $z = \dfrac{p_1  p_2}{\sqrt{p(1  p)\Bigg(\dfrac{1}{n_1} + \dfrac{1}{n_2}\Bigg)}}$
Here $p_1$ is the sample proportion of successes in group 1: $\dfrac{X_1}{n_1}$, $p_2$ is the sample proportion of successes in group 2: $\dfrac{X_2}{n_2}$, $p$ is the total proportion of successes in the sample: $\dfrac{X_1 + X_2}{n_1 + n_2}$, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. Note: we could just as well compute $p_2  p_1$ in the numerator, but then the left sided alternative becomes $\pi_2 < \pi_1$, and the right sided alternative becomes $\pi_2 > \pi_1.$  $Q = \dfrac{12}{N \times k(k + 1)} \sum R^2_i  3 \times N(k + 1)$
Here $N$ is the number of 'blocks' (usually the subjects  so if you have 4 repeated measurements for 60 subjects, $N$ equals 60), $k$ is the number of related groups (usually the number of repeated measurements), and $R_i$ is the sum of ranks in group $i$. Remember that multiplication precedes addition, so first compute $\frac{12}{N \times k(k + 1)} \times \sum R^2_i$ and then subtract $3 \times N(k + 1)$. Note: if ties are present in the data, the formula for $Q$ is more complicated.  Two different types of test statistics can be used, but both will result in the same test outcome. We will denote the first option the $W_1$ statistic (also known as the $T$ statistic), and the second option the $W_2$ statistic.
In order to compute each of the test statistics, follow the steps below:
 
Sampling distribution of $t$ if H_{0} were true  Sampling distribution of $z$ if H_{0} were true  Sampling distribution of $Q$ if H_{0} were true  Sampling distribution of $W_1$ and of $W_2$ if H_{0} were true  
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1  1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2  1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$  1 and $n_2$  1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations.  Approximately the standard normal distribution  If the number of blocks $N$ is large, approximately the chisquared distribution with $k  1$ degrees of freedom.
For small samples, the exact distribution of $Q$ should be used.  Sampling distribution of $W_1$:
If $N_r$ is large, $W_1$ is approximately normally distributed with mean $\mu_{W_1}$ and standard deviation $\sigma_{W_1}$ if the null hypothesis were true. Here $$\mu_{W_1} = \frac{N_r(N_r + 1)}{4}$$ $$\sigma_{W_1} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{24}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_1  \mu_{W_1}}{\sigma_{W_1}}$$ follows approximately the standard normal distribution if the null hypothesis were true. Sampling distribution of $W_2$: If $N_r$ is large, $W_2$ is approximately normally distributed with mean $0$ and standard deviation $\sigma_{W_2}$ if the null hypothesis were true. Here $$\sigma_{W_2} = \sqrt{\frac{N_r(N_r + 1)(2N_r + 1)}{6}}$$ Hence, if $N_r$ is large, the standardized test statistic $$z = \frac{W_2}{\sigma_{W_2}}$$ follows approximately the standard normal distribution if the null hypothesis were true. If $N_r$ is small, the exact distribution of $W_1$ or $W_2$ should be used. Note: if ties are present in the data, the formula for the standard deviations $\sigma_{W_1}$ and $\sigma_{W_2}$ is more complicated.  
Significant?  Significant?  Significant?  Significant?  
Two sided:
 Two sided:
 If the number of blocks $N$ is large, the table with critical $X^2$ values can be used. If we denote $X^2 = Q$:
 For large samples, the table for standard normal probabilities can be used: Two sided:
 
Approximate $C\%$ confidence interval for $\mu_1  \mu_2$  Approximate $C\%$ confidence interval for $\pi_1  \pi_2$  n.a.  n.a.  
$(\bar{y}_1  \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1  \mu_2$ can also be used as significance test.  Regular (large sample):
     
Visual representation  n.a.  n.a.  n.a.  
      
n.a.  Equivalent to  n.a.  n.a.  
  When testing two sided: chisquared test for the relationship between two categorical variables, where both categorical variables have 2 levels.      
Example context  Example context  Example context  Example context  
Is the average mental health score different between men and women?  Is the proportion of smokers different between men and women? Use the normal approximation for the sampling distribution of the test statistic.  Is there a difference in depression level between measurement point 1 (preintervention), measurement point 2 (1 week postintervention), and measurement point 3 (6 weeks postintervention)?  Is the median of the differences between the mental health scores before and after an intervention different from 0?  
SPSS  SPSS  SPSS  SPSS  
Analyze > Compare Means > IndependentSamples T Test...
 SPSS does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Analyze > Descriptive Statistics > Crosstabs...
 Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples...
 Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
 
Jamovi  Jamovi  Jamovi  Jamovi  
TTests > Independent Samples TTest
 Jamovi does not have a specific option for the $z$ test for the difference between two proportions. However, you can do the chisquared test instead. The $p$ value resulting from this chisquared test is equivalent to the two sided $p$ value that would have resulted from the $z$ test. Go to:
Frequencies > Independent Samples  $\chi^2$ test of association
 ANOVA > Repeated Measures ANOVA  Friedman
 TTests > Paired Samples TTest
 
Practice questions  Practice questions  Practice questions  Practice questions  