Two sample t test - equal variances not assumed - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Two sample $t$ test - equal variances not assumed | Logistic regression |
|
---|---|---|
Independent/grouping variable | Independent variables | |
One categorical with 2 independent groups | One or more quantitative of interval or ratio level and/or one or more categorical with independent groups, transformed into code variables | |
Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One categorical with 2 independent groups | |
Null hypothesis | Null hypothesis | |
H0: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | Model chi-squared test for the complete regression model:
| |
Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\mu_1 \neq \mu_2$ H1 right sided: $\mu_1 > \mu_2$ H1 left sided: $\mu_1 < \mu_2$ | Model chi-squared test for the complete regression model:
| |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | Model chi-squared test for the complete regression model:
The wald statistic can be defined in two ways:
Likelihood ratio chi-squared test for individual $\beta_k$:
| |
Sampling distribution of $t$ if H0 were true | Sampling distribution of $X^2$ and of the Wald statistic if H0 were true | |
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$ - 1 and $n_2$ - 1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations. | Sampling distribution of $X^2$, as computed in the model chi-squared test for the complete model:
| |
Significant? | Significant? | |
Two sided:
| For the model chi-squared test for the complete regression model and likelihood ratio chi-squared test for individual $\beta_k$:
| |
Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$ | Wald-type approximate $C\%$ confidence interval for $\beta_k$ | |
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | $b_k \pm z^* \times SE_{b_k}$ where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). | |
n.a. | Goodness of fit measure $R^2_L$ | |
- | $R^2_L = \dfrac{D_{null} - D_K}{D_{null}}$ There are several other goodness of fit measures in logistic regression. In logistic regression, there is no single agreed upon measure of goodness of fit. | |
Visual representation | n.a. | |
![]() | - | |
Example context | Example context | |
Is the average mental health score different between men and women? | Can body mass index, stress level, and gender predict whether people get diagnosed with diabetes? | |
SPSS | SPSS | |
Analyze > Compare Means > Independent-Samples T Test...
| Analyze > Regression > Binary Logistic...
| |
Jamovi | Jamovi | |
T-Tests > Independent Samples T-Test
| Regression > 2 Outcomes - Binomial
| |
Practice questions | Practice questions | |