Two sample t test - equal variances not assumed - overview
This page offers structured overviews of one or more selected methods. Add additional methods for comparisons by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table
Two sample $t$ test - equal variances not assumed | Paired sample $t$ test |
|
---|---|---|
Independent/grouping variable | Independent variable | |
One categorical with 2 independent groups | 2 paired groups | |
Dependent variable | Dependent variable | |
One quantitative of interval or ratio level | One quantitative of interval or ratio level | |
Null hypothesis | Null hypothesis | |
H0: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | H0: $\mu = \mu_0$
Here $\mu$ is the population mean of the difference scores, and $\mu_0$ is the population mean of the difference scores according to the null hypothesis, which is usually 0. A difference score is the difference between the first score of a pair and the second score of a pair. | |
Alternative hypothesis | Alternative hypothesis | |
H1 two sided: $\mu_1 \neq \mu_2$ H1 right sided: $\mu_1 > \mu_2$ H1 left sided: $\mu_1 < \mu_2$ | H1 two sided: $\mu \neq \mu_0$ H1 right sided: $\mu > \mu_0$ H1 left sided: $\mu < \mu_0$ | |
Assumptions | Assumptions | |
|
| |
Test statistic | Test statistic | |
$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | $t = \dfrac{\bar{y} - \mu_0}{s / \sqrt{N}}$
Here $\bar{y}$ is the sample mean of the difference scores, $\mu_0$ is the population mean of the difference scores according to the null hypothesis, $s$ is the sample standard deviation of the difference scores, and $N$ is the sample size (number of difference scores). The denominator $s / \sqrt{N}$ is the standard error of the sampling distribution of $\bar{y}$. The $t$ value indicates how many standard errors $\bar{y}$ is removed from $\mu_0$. | |
Sampling distribution of $t$ if H0 were true | Sampling distribution of $t$ if H0 were true | |
Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$ - 1 and $n_2$ - 1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations. | $t$ distribution with $N - 1$ degrees of freedom | |
Significant? | Significant? | |
Two sided:
| Two sided:
| |
Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$ | $C\%$ confidence interval for $\mu$ | |
$(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | $\bar{y} \pm t^* \times \dfrac{s}{\sqrt{N}}$
where the critical value $t^*$ is the value under the $t_{N-1}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu$ can also be used as significance test. | |
n.a. | Effect size | |
- | Cohen's $d$: Standardized difference between the sample mean of the difference scores and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{s}$$ Cohen's $d$ indicates how many standard deviations $s$ the sample mean of the difference scores $\bar{y}$ is removed from $\mu_0.$ | |
Visual representation | Visual representation | |
![]() | ![]() | |
n.a. | Equivalent to | |
- |
| |
Example context | Example context | |
Is the average mental health score different between men and women? | Is the average difference between the mental health scores before and after an intervention different from $\mu_0 = 0$? | |
SPSS | SPSS | |
Analyze > Compare Means > Independent-Samples T Test...
| Analyze > Compare Means > Paired-Samples T Test...
| |
Jamovi | Jamovi | |
T-Tests > Independent Samples T-Test
| T-Tests > Paired Samples T-Test
| |
Practice questions | Practice questions | |