# Two sample t test - equal variances not assumed - overview

This page offers structured overviews of one or more selected methods. Add additional methods for comparisons (max. of 3) by clicking on the dropdown button in the right-hand column. To practice with a specific method click the button at the bottom row of the table

Two sample $t$ test - equal variances not assumed | Two sample $t$ test - equal variances not assumed | One sample $z$ test for the mean |
You cannot compare more than 3 methods |
---|---|---|---|

Independent/grouping variable | Independent/grouping variable | Independent variable | |

One categorical with 2 independent groups | One categorical with 2 independent groups | None | |

Dependent variable | Dependent variable | Dependent variable | |

One quantitative of interval or ratio level | One quantitative of interval or ratio level | One quantitative of interval or ratio level | |

Null hypothesis | Null hypothesis | Null hypothesis | |

H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | H_{0}: $\mu_1 = \mu_2$
Here $\mu_1$ is the population mean for group 1, and $\mu_2$ is the population mean for group 2. | H_{0}: $\mu = \mu_0$
Here $\mu$ is the population mean, and $\mu_0$ is the population mean according to the null hypothesis. | |

Alternative hypothesis | Alternative hypothesis | Alternative hypothesis | |

H_{1} two sided: $\mu_1 \neq \mu_2$H _{1} right sided: $\mu_1 > \mu_2$H _{1} left sided: $\mu_1 < \mu_2$
| H_{1} two sided: $\mu_1 \neq \mu_2$H _{1} right sided: $\mu_1 > \mu_2$H _{1} left sided: $\mu_1 < \mu_2$
| H_{1} two sided: $\mu \neq \mu_0$H _{1} right sided: $\mu > \mu_0$H _{1} left sided: $\mu < \mu_0$
| |

Assumptions | Assumptions | Assumptions | |

- Within each population, the scores on the dependent variable are normally distributed
- Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
| - Within each population, the scores on the dependent variable are normally distributed
- Group 1 sample is a simple random sample (SRS) from population 1, group 2 sample is an independent SRS from population 2. That is, within and between groups, observations are independent of one another
| - Scores are normally distributed in the population
- Population standard deviation $\sigma$ is known
- Sample is a simple random sample from the population. That is, observations are independent of one another
| |

Test statistic | Test statistic | Test statistic | |

$t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | $t = \dfrac{(\bar{y}_1 - \bar{y}_2) - 0}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}} = \dfrac{\bar{y}_1 - \bar{y}_2}{\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}}$
Here $\bar{y}_1$ is the sample mean in group 1, $\bar{y}_2$ is the sample mean in group 2, $s^2_1$ is the sample variance in group 1, $s^2_2$ is the sample variance in group 2, $n_1$ is the sample size of group 1, and $n_2$ is the sample size of group 2. The 0 represents the difference in population means according to the null hypothesis. The denominator $\sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}}$ is the standard error of the sampling distribution of $\bar{y}_1 - \bar{y}_2$. The $t$ value indicates how many standard errors $\bar{y}_1 - \bar{y}_2$ is removed from 0. Note: we could just as well compute $\bar{y}_2 - \bar{y}_1$ in the numerator, but then the left sided alternative becomes $\mu_2 < \mu_1$, and the right sided alternative becomes $\mu_2 > \mu_1$. | $z = \dfrac{\bar{y} - \mu_0}{\sigma / \sqrt{N}}$
Here $\bar{y}$ is the sample mean, $\mu_0$ is the population mean according to the null hypothesis, $\sigma$ is the population standard deviation, and $N$ is the sample size. The denominator $\sigma / \sqrt{N}$ is the standard deviation of the sampling distribution of $\bar{y}$. The $z$ value indicates how many of these standard deviations $\bar{y}$ is removed from $\mu_0$. | |

Sampling distribution of $t$ if H_{0} were true | Sampling distribution of $t$ if H_{0} were true | Sampling distribution of $z$ if H_{0} were true | |

Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$ - 1 and $n_2$ - 1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations. | Approximately the $t$ distribution with $k$ degrees of freedom, with $k$ equal to $k = \dfrac{\Bigg(\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}\Bigg)^2}{\dfrac{1}{n_1 - 1} \Bigg(\dfrac{s^2_1}{n_1}\Bigg)^2 + \dfrac{1}{n_2 - 1} \Bigg(\dfrac{s^2_2}{n_2}\Bigg)^2}$ or $k$ = the smaller of $n_1$ - 1 and $n_2$ - 1 First definition of $k$ is used by computer programs, second definition is often used for hand calculations. | Standard normal distribution | |

Significant? | Significant? | Significant? | |

Two sided:
- Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
- Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
- Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
- Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
- Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
- Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
| Two sided:
- Check if $t$ observed in sample is at least as extreme as critical value $t^*$ or
- Find two sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
- Check if $t$ observed in sample is equal to or larger than critical value $t^*$ or
- Find right sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
- Check if $t$ observed in sample is equal to or smaller than critical value $t^*$ or
- Find left sided $p$ value corresponding to observed $t$ and check if it is equal to or smaller than $\alpha$
| Two sided:
- Check if $z$ observed in sample is at least as extreme as critical value $z^*$ or
- Find two sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
- Check if $z$ observed in sample is equal to or larger than critical value $z^*$ or
- Find right sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
- Check if $z$ observed in sample is equal to or smaller than critical value $z^*$ or
- Find left sided $p$ value corresponding to observed $z$ and check if it is equal to or smaller than $\alpha$
| |

Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$ | Approximate $C\%$ confidence interval for $\mu_1 - \mu_2$ | $C\%$ confidence interval for $\mu$ | |

$(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | $(\bar{y}_1 - \bar{y}_2) \pm t^* \times \sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}}$
where the critical value $t^*$ is the value under the $t_{k}$ distribution with the area $C / 100$ between $-t^*$ and $t^*$ (e.g. $t^*$ = 2.086 for a 95% confidence interval when df = 20). The confidence interval for $\mu_1 - \mu_2$ can also be used as significance test. | $\bar{y} \pm z^* \times \dfrac{\sigma}{\sqrt{N}}$
where the critical value $z^*$ is the value under the normal curve with the area $C / 100$ between $-z^*$ and $z^*$ (e.g. $z^*$ = 1.96 for a 95% confidence interval). The confidence interval for $\mu$ can also be used as significance test. | |

n.a. | n.a. | Effect size | |

- | - | Cohen's $d$:Standardized difference between the sample mean and $\mu_0$: $$d = \frac{\bar{y} - \mu_0}{\sigma}$$ Cohen's $d$ indicates how many standard deviations $\sigma$ the sample mean $\bar{y}$ is removed from $\mu_0.$ | |

Visual representation | Visual representation | Visual representation | |

Example context | Example context | Example context | |

Is the average mental health score different between men and women? | Is the average mental health score different between men and women? | Is the average mental health score of office workers different from $\mu_0 = 50$? Assume that the standard deviation of the mental health scores in the population is $\sigma = 3.$ | |

SPSS | SPSS | n.a. | |

Analyze > Compare Means > Independent-Samples T Test...
- Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
- Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
- Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
- Continue and click OK
| Analyze > Compare Means > Independent-Samples T Test...
- Put your dependent (quantitative) variable in the box below Test Variable(s) and your independent (grouping) variable in the box below Grouping Variable
- Click on the Define Groups... button. If you can't click on it, first click on the grouping variable so its background turns yellow
- Fill in the value you have used to indicate your first group in the box next to Group 1, and the value you have used to indicate your second group in the box next to Group 2
- Continue and click OK
| - | |

Jamovi | Jamovi | n.a. | |

T-Tests > Independent Samples T-Test
- Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
- Under Tests, select Welch's
- Under Hypothesis, select your alternative hypothesis
| T-Tests > Independent Samples T-Test
- Put your dependent (quantitative) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
- Under Tests, select Welch's
- Under Hypothesis, select your alternative hypothesis
| - | |

Practice questions | Practice questions | Practice questions | |